10182

# Finite Difference Scheme for the Heat Equation

We apply a finite difference scheme to the heat equation, , and study its convergence. The rate of convergence (or divergence) depends on the problem data and the inhomogeneous function .

### DETAILS

Consider the finite difference scheme
,
, ,
, , ,
, .
This Demonstration shows how the convergence of this finite difference scheme depends on the initial data, the boundary values, and the parameter that defines the scheme for the heat equation . If , then the scheme is called explicit; if , it is called implicit. If , then the scheme is stable, so the approximate solution converges to the exact solution. If , the scheme diverges.
The three pairs of snapshots 1–2, 3–4, and 5–6 show the dependence of the convergence on .
Reference
[1] A. A. Samarskii and A. V. Goolin, Numerical Methods (in Russian), Moscow: Science, 1989.

### PERMANENT CITATION

Contributed by: Igor Mandric and Ecaterina Bunduchi
(Moldova State University)
 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.