9853

Finite Difference Scheme for the Heat Equation

We apply a finite difference scheme to the heat equation, , and study its convergence. The rate of convergence (or divergence) depends on the problem data and the inhomogeneous function .

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Consider the finite difference scheme
,
, ,
, , ,
, .
This Demonstration shows how the convergence of this finite difference scheme depends on the initial data, the boundary values, and the parameter that defines the scheme for the heat equation . If , then the scheme is called explicit; if , it is called implicit. If , then the scheme is stable, so the approximate solution converges to the exact solution. If , the scheme diverges.
The three pairs of snapshots 1–2, 3–4, and 5–6 show the dependence of the convergence on .
Reference
[1] A. A. Samarskii and A. V. Goolin, Numerical Methods (in Russian), Moscow: Science, 1989.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+