10182

Fraction of a Circle Covered by Arcs of a Given Length

This Demonstration shows the probability density function for the fraction of a circle with unit circumference covered by random arcs, each of length . This probability distribution is a mixed distribution. The discrete probability mass is shown and captioned in red, and the continuous probability density is shown in blue (scaled by ). and are the mean and variance of the fraction covered.

DETAILS

The probability density function is continuous between 0 and , where is the minimum of 1 and , and has a discrete probability at . For , the discrete part is the probability that all arcs do not overlap. When , the discrete part is the probability of complete coverage of the circle. The probability density function and probability mass functions shown are calculated in [1].
Reference
[1] H. Solomon, Geometric Probability, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1978 pp. 75–96.

PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.