11481

# Gailiunas's Spiral Tilings

Explore a series of 52 spirals made from intersecting regular polygons with up to 36 vertices.

### DETAILS

Paul Gailiunas [1] found a method that can produce spirals with three or more arms. This Demonstration shows 52 spirals made from intersecting -gons up to with all possible numbers of arms from 3 to 18. The basic polygonal tiles can be considered as bent wedges with three boundaries made of equal edges: a base of 1 segment, a convex side using segments and a concave side using segments. For fewer arms, several spirals with the same number of arms originating from different -gons are given.
These monohedral spiral tilings are nonperiodic, have rotational symmetry and tile the plane.
Controls
"arms, , ": select one of the 52 spirals with the given number of arms, made from a specific -gon, using segments at the convex side.
"levels": controls the length of the arms.
"edges": use this checkbox for enhancing the boundaries of the polygons.
"color count": set the number of cyclic colors selected from the color palette popup menu. Selecting "arms" provides different colors for each arm.
Reference
[1] P. Gailiunas, "Spiral Tilings," in Bridges: Mathematical Connections in Art, Music, and Science, Winfield, KS: Bridges Conference, 2000 pp. 133–140. archive.bridgesmathart.org/2000/bridges2000-133.pdf.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.