Gas Absorption Computed Using the Successive Over-Relaxation (SOR) Method

Consider a tray absorption column used to remove an impurity from a gas stream. A pure solvent is used for this absorption operation. The solvent molar flow rate is and the gas molar flow rate is . Both and are considered constant (i.e., the dilute system hypothesis remains valid). The number of equilibrium stages is , the value of the slope of the equilibrium line () is set to , the solvent-to-gas molar flow rate ratio , and the mole fraction of the impurity in the gas fed to the absorption column is chosen to be .
This Demonstration computes the exact McCabe–Thiele diagram using matrix inversion. The horizontal lines represent the theoretical equilibrium stages in the absorption column. The successive over-relaxation (SOR) method is compared to the exact solution by plotting the cumulative squared error versus the number of iterations. The parameter is chosen to be between and . For (see the last snapshot showing large growing error), you can see that the SOR method fails to give good results. A theorem of Kahan states that the SOR method will converge only if is chosen in the interval . For , the SOR method is identical to the Gauss–Seidel technique.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


After work by John H. Mathews
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+