Gavrilov-Shilnikov Model

The Gavrilov–Shilnikov model exhibits a bifurcation known as the "blue-sky catastrophe", which is the last of the seven known bifurcations of a periodic orbit. This catastrophe creates a stable periodic orbit whose length and period increase without bound. Some applications include models for neuron activity and the operation of jet engines.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The relevant system of equations is
containing the empirical parameters , , and . Plots of variables , , and as functions of time appear at the bottom.
[1] A. Shilnikov and D. Turaev, "Blue-Sky Catastrophe," Scholarpedia, 2(8):1889, 2007. www.scholarpedia.org/article/Blue-sky_catastrophe.
[2] N. Gavrilov and A. Shilnikov, "Example of a Blue Sky Catastrophe," Methods of Qualitative Theory of Differential Equations and Related Topics, American Mathematical Society Translations, 2(200), (L. Lerman, G. Polotovskii, and L. Shilnikov, eds.), Providence, RI: American Mathematical Society, 2000 pp. 99–105.
[3] T. Vialar, Complex and Chaotic Nonlinear Dynamics, Berlin: Springer, 2009.


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+