Generalized Central Limit Theorem

Tail behavior of sums of random variables determine the domain of attraction for a distribution. If variance exists, under the central limit theorem (CLT), distributions lie in the domain of attraction of a normal distribution. For infinite variance models one appeals to the generalized central limit theorem (GCLT) and finds that distributions lie in the domain of attraction of a stable distribution. Stated differently, the GCLT states that a sum of independent random variables from the same distribution, when properly centered and scaled, belongs to the domain of attraction of a stable distribution. Further, the only distributions that arise as limits from suitably scaled and centered sums of random variables are stable distributions.
The Pareto distribution displays pure tail behavior. The plot shows that as sample size increases sums of Pareto random variables having a shape parameter converge to the stable distribution with the same . Due to size and time constraints the largest number of sums in this Demonstration is relatively small compared to what is required for the fit to match the chosen alpha value. After all, convergence occurs as , and the largest number of sums is 2048, which is still far from infinity.
The two-tailed model is set up as the weighted difference of two ParetoDistribution[1,α] random variables, to give a left-skewed distribution with stable . The density histogram fit is shown after generating stable random variates in the range . Note the approximate normal as sample size grows and approaches 2 where the CLT becomes valid.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The shift and scale values required in order for the distribution to converge to a standardized scale and location are shown with each rendering of the plot.
When , the mean of the stable distribution does not exist, so a different centering strategy is necessary.
This Demonstration has implications for cases where the conventional assumption of finite variance must be suspended. Tail behavior determines the domain of attraction. Extreme value theory, an extension of heavy-tail mathematics, is based on sums of the maxima of sums of random variables.
Resources to explore this more fully with notebooks allowing values across the entire parameter space may be found at
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students. »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+