11471

Generalized Gosper Curves and Trisected Variants

The space-filling seven-segment Gosper curve and its generalized extensions are modified and dissected into three identical parts. Included are fractal space-filling curves based on 13, 19, 31 and 37 segments.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

In the limit, the space-filling fractal Gosper curve (also known as the Peano–Gosper curve) covers the interior of the Gosper island (also known as a "flowsnake"). The basic Gosper curve can be generalized to fractal curves based on the iteration of 13, 19, 31, 37, … segments [1]. There exist several versions of the 31 and 37 segment curves, either having different outlines or traversing its area by different paths. All these curves can be replaced by three identical subcurves (by trisection) that together cover the same area as the corresponding generalized Gosper curve. This Demonstration only includes a selection from the full variety of Gosper curves and their trisections. Some curves marked as "trial" use the same number of segments and cover the same area as the corresponding Gosper curve but have different outlines.
Triplets of trisected subcurves define a closed path that you can view as filled polygons (select color mode: "color fill"). This mode is rejected for "normal" Gosper curves that do not show a closed path. All curves except sample "Gosper 37b trisect c" are self avoiding or touch only at specific points, as you can see using the rounding option. The curves are generated using an L-system and so are self-similar by construction.
References
[1] Fukuda, M. Shimizu and G. Nakamura, "New Gosper Space Filling Curves," Proceedings of the International Conference on Computer Graphics and Imaging (CGIM2001), 2001, pp. 34–38. kilin.clas.kitasato-u.ac.jp/museum/gosperex/343-024.pdf.
[2] Wikipedia. "L-System." (Nov 14, 2016) en.wikipedia.org/wiki/L-system.
[3] Wikipedia. "Gosper Curse." (Nov 14, 2016) en.wikipedia.org/wiki/Gosper_curve.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+