Generating a Hyperboloid by Rotating a Line

A hyperboloid can be generated by rotating a line around the axis. The vertical line through the origin is first translated in the - plane and then rotated about an axis in the - plane. Enough information is then available to use standard equations to calculate the foci and hyperbola curves; two foci are shown as small spheres.


  • [Snapshot]


The two vertices of the calculated hyperbola (green curves) are located on the transverse axis at . The point in the - plane is the initial translation point of the dynamic (red) line. The static angle in the - plane can be used to calculate the angle of the asymptotes with the transverse - axis, . The foci are then . The hyperbola equations are , , , where varies from 0° to 360°; is the conjugate axis . These calculations use only the initial dynamic rotating line position.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+