Geodesic Balls in the Nil-Space

W. Heisenberg's real matrix group provides a noncommutative translation group of an affine 3-space. The Nil-geometry, which is one of the eight Thurston 3-geometries, can be derived from this group. It was proved by E. Molnár that the homogeneous 3-spaces have a unified interpretation in the projective 3-sphere ). In this Demonstration we visualize the geodesic balls of the Nil-space with the origin as the center, radius in , and translated by .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


We get the geodesic ball by rotating the following curve about the axis (lying in the plane ): , if ; if : , .
If , then the curve is basically half of the intersection of the geodesic sphere with the [, ] plane and looks like this:
The coordinates of a point rotated by around the axis are (, , ).
Finally, we can translate the geodesic sphere with a vector (, , ) to get , , ). This translation is defined by left multiplication with Heisenberg's matrix:
It is a good idea to zoom in for a better view as well as to rotate the image.
If the radius is less than , then the ball is convex in the affine-Euclidean sense of our model, but if the radius is in , then it is not convex. Also the geodesic sphere exists in Nil if and only if . For example if , then the curve used to rotate about the axis would be:
J. Szirmai, "The Densest Geodesic Ball Packing by a Type of Nil Lattices," Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 48(2), 2007 pp. 383-397.


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+