Geodesic Cone in Nil-Geometry

W. Heisenberg's real matrix group provides a noncommutative translation group of an affine three-space. The Nil-geometry, which is one of the eight Thurston three-geometries, can be derived from this group. E. Molnár proved that the homogeneous three-spaces have a unified interpretation in the projective three-sphere ). In this Demonstration a geodesic line rotated around the axis, (a "geodesic cone") is visualized.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


You get a "geodesic cone" by rotating a geodesic curve around the axis. The geodesic curves of the Nil-geometry are generally defined as having locally minimal arc length between any two (near enough) points. The system of equations of a parametrized geodesic curve is (where , ):
if , and
if .
Here and are the parameters of a geodesic curve (, ); in this Demonstration you can adjust these values.
The following is an example of a geodesic curve with parameters , :
A point rotated through has the following coordinates: (, , ).
As you can see, a geodesic curve returns periodically to the axis. We get the "geodesic cone" by rotating the part of the geodesic curve between the origin and the first return to the axis around the axis.
If we rotated the whole curve, then it would look like this (with , ):
In this Demonstration you can adjust the and parameters, and according to this, the parameter (the arc length parameter) has a value .
J. Szirmai, "The Densest Geodesic Ball Packing by a Type of Nil Lattices," Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), 48(2), 2007 pp. 383–397.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+