Geodesics in the Morris-Thorne Wormhole Spacetime

The simplest wormhole geometry is given by the line element , see [2]. The parameter defines the size of the throat of the wormhole, and represents the proper length radius.
Light rays and objects in free motion in four-dimensional spacetimes follow lightlike or timelike geodesics. In general, these geodesics must be computed numerically. However, in the Ellis wormhole spacetime, there is an analytic solution of the geodesic equation in terms of elliptic integral functions. Because of the spherical symmetry and staticity of the metric, it suffices to consider geodesics in the hypersurface . This two-dimensional surface can be embedded in the three-dimensional Euclidean space. The corresponding embedding function reads with .
In this application, you can change the throat size , the initial position of the observer, and the initial angle of the geodesic with respect to the local reference frame of the observer.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


A detailed discussion about analytic geodesics in the Morris–Thorne wormhole spacetime can be found in [1].
The metric described in [2] was first mentioned in [3]. Hence, it should be called Ellis wormhole instead. See also the apology in [4], Ref. 14.
[1] T. Müller, "Exact Geometric Optics in a Morris–Thorne Wormhole Spacetime," Physical Review D, 77(4) 2008. doi: 10.1103/PhysRevD.77.044043.
[2] M. S. Morris and K. S. Thorne, "Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity," American Journal of Physics, 56(5), 1988 pp. 395–412.
[3] H. G. Ellis, "Ether Flow through a Drainhole: A Particle Model in General Relativity," Journal of Mathematical Physics, 14, 1973 pp. 104–118; 1974 Errata: 15, p. 520.
[4] O. James, E. von Tunzelmann, P. Franklin, and K. S. Thorne, "Visualizing Interstellar's Wormhole," American Journal of Physics 83, 2015 pp. 483–499.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+