11454

Geometric Brownian Motion with Nonuniform Time Grid

This Demonstration simulates geometric Brownian motion (GBM) paths with a nonuniform time grid. A GBM is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. In computational finance, GBM is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior.
As an example, this Demonstration generates random GBM paths and uses Monte Carlo simulation to estimate the price of a European put option, with starting stock price , strike price , maturity time , stock price volatility , risk-free interest rate , and stock dividend yield . The simulation output is compared against the analytic Black–Scholes output, calculated with Mathematica's built-in function FinancialDerivative.
The coefficient () generates nonuniform time steps with decreasing length as we approach maturity, according to the model: . If , the time grid becomes uniform.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Let denote the number of time steps and the number of GBM paths. The list of the stock prices that the GBM path consists of are generated according to the following process:
, , where , follows the standard normal distribution, and is the drift of the stochastic process.
The Monte Carlo estimation of the European put option derives from the discounted average of the option's possible payoffs at expiry:
.
This Demonstration does not use Mathematica's built-in function GeometricBrownianMotionProcess because the Monte Carlo simulation using RandomFunction requires fixed time steps as in RandomFunction[GeometricBrownianMotionProcess[mu,sigma,x0],{t0,tend,dt}].
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+