Geometric Representation of Method of Lagrange Multipliers

This Demonstration gives a geometric representation of the method of Lagrange multipliers. The initial view shows the red point iteratively moving toward a minimum of a specified function. At each iteration, the point takes a small step in the direction, shown by the red arrow, that causes the greatest reduction in the value of the function, i.e. the direction of steepest descent. This direction varies from point to point and can be visualized by the "field" of blue streamlines.
Next, consider what will happen if the point is constrained to move along the circumference of a fixed circle. Check the box labeled "Constrain to circle" to find out. You can explore numerous ways of interacting with this figure, or read the Details section for further information on the method of Lagrange multipliers.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Interactive Elements
1. Click anywhere in the figure to reset the point's initial position. As before, the point will move following the path of steepest descent toward a local minimum of the function.
2. When you check the option "Constrain to circle", a circle is displayed on the figure and the program attempts to seek a minimum while keeping the point constrained to the circumference of the circle. Also, a short segment of the tangent to the circle is shown in red.
3. When you check the option "Constrain to circle", you can drag the center of the circle to move the circle. Click elsewhere to reset the initial position of the point on the circle.
4. Use the "Pause" button to temporarily halt the animation. Click again to resume.
5. When the option "Show simple example" is checked, the original function is replaced by a simple function for which the direction of steepest descent is always pointing straight down.
The process of minimization is easiest to understand when you check both the options "Constrain to circle" and "Show simple example". By analogy of a bead acted upon by gravity and sliding along a hoop of wire, the "natural" location of the minimum is at the bottom of the circle. It is easy to see that the tangent at this minimum point must be horizontal, that is, perpendicular to the direction of gravity. If the tangent were not horizontal, that naturally would imply that the point could slide along the wire in the direction of the tangent and further minimize the function.
This same insight carries over to the more complex constrained minimization problem. When a minimum is found, the direction of steepest descent (which acts as the "direction of local gravity") must be perpendicular to the tangent of the constraint curve at that point.
Formally, in order to find a minimizer of subject to the constraint , we have to find candidate points such that the gradient vector (the negative of the direction of steepest descent) is perpendicular to the tangent to the curve . From this point, it is a but a few short, formal steps to arrive at the textbook version of the Lagrange multiplier formulation, which states that minimizers (and other extreme points) can be found by solving the unconstrained problem of minimizing , where is called a Lagrange multiplier.
Joseph-Louis Lagrange (1736–1813) prided himself on keeping his work free of distracting diagrams. Nevertheless, I hope that this Demonstration makes his beautiful application of the calculus more accessible.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+