# Gibbs Phenomenon in the Truncated Discrete-Time Fourier Transform of the Sinc Sequence

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

Using a finite number of terms of the Fourier series approximating a function gives an overshoot at a discontinuity in the function. This is called the Gibbs phenomenon. This Demonstration shows the same phenomenon with the discrete-time Fourier transform (DTFT) of a sinc sequence. The oscillations around the discontinuity persist with an amplitude of roughly 9% of the original height.

Contributed by: Jelena Kovacevic (June 2012)

Open content licensed under CC BY-NC-SA

## Snapshots

## Details

The Gibbs phenomenon was first observed in the 19th century, when trying to synthesize a square wave with a finite number of Fourier series coefficients. The oscillations around the discontinuities, while they became narrower, remained of constant amplitude even when more terms were added. This behavior was first attributed to flaws in the computation that was synthesizing the square wave, but J. Willard Gibbs in 1899 demonstrated that it was an actual mathematical phenomenon.

Reference

[1] M. Vetterli, J. Kovačević, and V. K. Goyal, *Foundations of Signal Processing*, Cambridge: Cambridge University Press, 2014. www.fourierandwavelets.org.