10182

# Gram-Schmidt Process in Two Dimensions

The Gram-Schmidt process is a means for converting a set of linearly independent vectors into a set of orthonormal vectors. If the set of vectors spans the ambient vector space, then this produces an orthonormal basis for the vector space.

The Gram-Schmidt process is a recursive procedure. After the first vectors have been converted into orthonormal vectors, the difference between the original vector and its projection onto the space spanned by the first orthonormal vectors is normalized to obtain the vector in the orthonormal collection.

In two dimensions, start with a vector and normalize it to obtain . Next, project onto and compute , the difference between and this projection. Finally, normalize this vector to obtain .

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.