10176

# Graph Products

In general, a graph product of two graphs G and H is a graph with vertex set V(G)×V(H) and edges given by a function of the edges of G and H. We present the four most canonical such products:
Except the lexicographic, they are all commutative. It is natural to display such graphs on a grid, however, this can obscure adjacency by overlapping edges. To reveal the graph structure we offer three options: perturb the vertex positions with random noise, use the sliders to specify a function distorting the grid coordinates, or curve the edges. Alternatively, one can view the operation as an equation. For the cartesian product there is a special, additional embedding (and edge coloring) designed to highlight the subgraphs corresponding to the factors and an angle parameter that can adjust their relative orientation (the vertices can also be perturbed). Moving the mouse over the vertices of any graph in equation form will reveal the projections of the selected vertex.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.