Growth in 1D Substitution Systems with Two Colors and Up to One Neighbor

Substitution systems whose rules depend on the color of a single element and on the color of the next neighbor produce an unbalanced rate of growth and disappearance. If the rate of disappearances is too large, then almost any pattern will quickly die out, and if there are too few disappearances, then most patterns will grow exponentially or sub-exponentially. This model is a derivation of the neighbor-dependent model, allowing growth from one single cell. You can explore 117649 rules of this kind.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


As an example, rule 111715 produces sub-exponential growth starting from a white cell. The pattern of growth is exponential when starting from two white cells, but reverts to sub-exponential when a black cell is in between them.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+