Heat Generation and Conduction through Composite Walls

Temperature profiles are calculated for steady-state conduction through a series of three walls with different thermal conductivity. There is also a contact resistance between each pair of walls. Heat is generated at a constant rate in either wall or (select using buttons). Set the rate of heat generation and the contact resistance between the walls with sliders. The distance between the walls is exaggerated so that the temperature profile is more easily seen. The left side of wall is insulated, and heat is transferred from the right side of wall to the flowing air, which is at 20 °C.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The heat flux from the wall with generation is uniform and directed toward the right:
where is in , is the thickness of the wall with generation (m) and is the volumetric heat generation rate ().
A thermal circuit is considered from the right side of the wall with generation to the air with forced convection. If is the wall with generation, then the heat flux can be written as:
where is contact resistance (), is the right surface of wall and is the right side of wall (°C). However, if wall is the wall with generation, then the thermal circuit can only be used to solve up to , the right side of wall .
The temperature profile for heat generation in either wall or is calculated using:
where is the thermal conductivity of the wall with generation.
The boundary conditions are:
the left side () is well insulated so the flux is zero. The temperature of the right side of the wall with generation is determined from the thermal circuit.
[1] T. L. Bergman, A. S. Lavine, F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, 6th ed., Hoboken: John Wiley and Sons, 2011.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+