10981

Heat Transfer and Temperature Distribution in a Fin

This Demonstration calculates temperature as a function of distance from the base of a fin of uniform cross-sectional area. The fin is attached to a base, which has the same cross-sectional area and is at a constant temperature of 100 °C. Heat loss from the fin is by natural convection to the surrounding air, which is at 25 °C. The rate of heat transfer is calculated for an adiabatic tip (no heat transfer through the tip surface) and for a tip that has heat transfer by convection. The temperature decreases down the fin due to conduction and to heat being lost by convection. The conduction is assumed to be one-dimensional along the length of the fin. Use sliders to vary the dimensions of the fin.
Use buttons to select the fin cross-section (rectangular or pin fin). Select one of three fin materials (with different thermal conductivities) with buttons. Select "fin" to view a three-dimensional representation of the fin. Select "graph" to view a plot of temperature versus distance from the base; note that the plot range changes for certain conditions.
The heat transfer rates (for adiabatic tip or tip with convection) are shown in the plot. The temperature distribution is shown on the fin surface using a color scale (red is hottest, blue is coolest), and the temperature of the fin tip is shown below the fin along with the temperature legend.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The axial temperature distributions for a fin of uniform cross section for an adiabatic tip and a tip with convection are:
,
,
,
for a rectangular fin:
,
,
for a pin fin:
,
,
where and are the base and ambient air temperatures, is fin length (m), is position down the fin (m), is the convection heat transfer coefficient, is the thermal conductivity of the material (W/(m K)), is a simplification term, is fin perimeter (m), is the fin cross-sectional area (), and are the width and height of the rectangular fin (m) and is the pin fin diameter (m).
The fin heat transfer rates for each tip condition are:
,
,
,
where is in W, and is a simplification term.
The thermal conductivities for the fin materials are:
,
,
.
Reference
[1] T. L. Bergman, A. S. Lavine, F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, 6th ed., Hoboken: John Wiley and Sons, 2011 p. 161.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2016 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+