Hodgkin-Huxley Action Potential Model

The voltage across membranes of excitable cells (e.g. nervous system, muscles, heart, endocrine system) transiently changes, creating a pulse-like wave called an "action potential". The action potential serves as a major signal for the initiation of many cellular and intercellular processes. The canonical mathematical-physical model of the phenomenon was presented by Alan Hodgkin and Andrew Huxley in 1952 in a series of seminal papers [2], where membrane potenial dynamics is described in terms of voltage-dependent ionic conductance, dominated by four coupled ordinary differential equations. In the Demonstration presented here, the action potential is trigerred by a short current stimulus. Shown are time evolutions of membrane voltage (blue trace) and conductance gates (, , and ).


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Units: , , , and .
Rate functions:
Maximal conductances are , , and for sodium, potassium, and leak, respectively. Nernst equilibrium potentials are , , and for sodium, potassium, and leak, respectively. Membrane capacitance is set to 1.
[1] B. Hille, Ion Channels of Excitable Membranes, Sunderland, MA: Sinauer, 2001.
[2] A. L. Hodgkin and A. F. Huxley, "A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve," Journal of Physiology, 117, 1952 pp. 500–544.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+