Hopf Bifurcation in the Brusselator

The Brusselator is a model for chemical oscillation with a limit cycle. The emergence of the limit cycle can be proven by the Andronov–Hopf bifurcation theorem.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The dynamics and chemistry of oscillating reactions has been the subject of study only for the last 50 years, starting with the work of Belousov. The mechanism for the Brusselator is given by . The two species of interest are and , the autocatalytic species. The differential equations given in dimensionless form for these species are and . For this analysis all rate constants except those of the second step are assumed to equal 1 and the reactants and are assumed to be in large enough excess so that their concentrations do not change with time. Both the parameters and are changed in the Demonstration, and as a result concentration-time curves and trajectories (selectivity curves in chemical terms) are shown.
I. Prigogine and R. Lefever, "Symmetry Breaking Instabilities in Dissipative Systems II," Journal of Chemical Physics, 48, 1968 pp. 1695–1700.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+