How the Roots of a Polynomial Depend on Its Constant Coefficient

This Demonstration shows how the roots (blue points) of the polynomial depend on the constant coefficient , which is shown enclosed in parentheses. The polynomial has multiple roots (cyan points) if and . The values of for roots of the second equation are called critical points (red points).
The zeros of a polynomial are continuous functions of its coefficients. If , one root is 0, and the others are the roots of 1. In the case of , the roots are . If moves in a loop from to , enclosing only the positive critical point (red point), the positions of the zeros corresponding to and of as a function of are interchanged.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


This Demonstration visualizes a part of the proof that equations of degree 5 are not solvable in radicals [1, pp. 77–90].
[1] D. Fuchs and S. Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, Providence: American Mathematical Society, 2007. www.math.psu.edu/tabachni/Books/taba.pdf.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+