How to Use the McCabe-Thiele Method for Fractional Distillation

Requires a Wolfram Notebook System

Interact on desktop, mobile and cloud with the free Wolfram CDF Player or other Wolfram Language products.

Requires a Wolfram Notebook System

Edit on desktop, mobile and cloud with any Wolfram Language product.

This Demonstration shows how to use the McCabe–Thiele method to determine the number of equilibrium stages needed to separate a binary mixture (methanol and water) in a distillation column.

[more]

First, select "plot points" to show the location of the feed, distillate and bottoms compositions on the - diagram. The methanol feed mole fraction is , the desired methanol mole fraction in the distillate is , and the desired methanol mole fraction in the bottoms is . Next, select "draw operating lines" to set the feed quality with a slider and plot the operating lines for the feed, rectifying and stripping sections. The diagram on the right shows a representation of part of the distillation column and explains the equations used for the operating lines.

Then, select "count stages" and use the slider to step off stages and draw lines for each stage; the diagram on the right highlights the corresponding location on the column. The partial reboiler is considered an equilibrium stage. The green horizontal lines on the - diagram result from a material balance between stages. The purple vertical lines correspond to vapor-liquid equilibrium (VLE) on each stage. Finally, select "optimal feed location" to determine where the feed should enter the column; the feed should enter above the stage where the rectifying and stripping sections meet. Mouse over the stage numbers on the - diagram to see which section the numbers correspond to.

[less]

Contributed by: Rachael L. Baumann (February 2017)
Additional contributions by: John L. Falconer
(University of Colorado Boulder, Department of Chemical and Biological Engineering)
Open content licensed under CC BY-NC-SA


Snapshots


Details

The equilibrium curve is calculated using the modified Raoult's law:

,

,

where and are the liquid and vapor mole fractions ( for methanol, for water), , , is total pressure, and is the saturation pressure, which is calculated using the Antoine equation:

,

where is temperature and , and are constants.

The activity coefficients are calculated using the two-parameter Margules model:

,

,

where and are the Margules parameters for a methanol/water mixture.

The operating line for the rectifying section from stages 1 to is found from a material balance:

,

,

where and are the liquid and vapor flow rates in the rectifying section, is the distillate flow rate, and is the mole fraction of methanol in the distillate stream.

Because of constant molar overflow (CMO), the reflux ratio is the same everywhere. Combining with a material balance around the total condenser, , the operating line can be written in terms of the reflux ratio:

.

The operating line for the stripping section from stages to is found from a material balance:

,

,

where and are the liquid and vapor flow rates in the stripping section, is the bottoms flow rate, and is the mole fraction of methanol in the bottoms stream.

The boilup ratio is constant everywhere. Combining with a material balance around the partial reboiler, , the operating line for the stripping section can be written in terms of the boilup ratio:

.

Typically the feed operating line (-line) is used to locate the stripping operating line. The parameter is defined as the ratio of the increase in molar reflux rate across the feed stage to the molar feed rate:

,

where is the feed flow rate.

One point on the -line is the intersection of the rectifying and stripping section operating lines; thus the -line can be derived from:

.

Combining an overall material balance around the column , a material balance around the feed stage and the definition of , the -line is:

,

where is the mole fraction of methanol in the feed.

Once the operating lines and compositions are plotted on the - diagram, the number of equilibrium stages needed to achieve a bottoms composition of is determined. Start at the top of the column at . A material balance in between stages (operating line) is used to calculate from :

.

Based on the material balance, has to be balanced with so a horizontal line (green) is drawn from on the - line to on the equilibrium curve. For the stripping section, the material balance is .

On each stage, the liquid and vapor streams are in VLE, so the stream has a liquid composition and a vapor composition . A vertical line (purple) is drawn from the equilibrium curve at to the - line at . This process is repeated until the bottoms composition is reached. Typically the number of stages drawn is not a whole number. The partial reboiler is considered an equilibrium stage. View the screencast videos [2, 3] for a step-by-step explanation of the McCabe–Thiele method. The screencast video [4] explains how material balances and VLE data are used to determine the number of equilibrium stages.

References

[1] J. D. Seader, E. J. Henley and D. K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3rd ed., Hoboken, NJ: Wiley, 2011.

[2] University of Colorado Boulder. McCabe–Thiele Graphical Method Example Part 1 [Video]. (Feb 2, 2017) www.youtube.com/watch?v=Cv4KjY2BJTA.

[3] University of Colorado Boulder. McCabe–Thiele Graphical Method Example Part 2 [Video]. (Feb 2, 2017) www.youtube.com/watch?v=eIJk5uXmBRc.

[4] University of Kentucky. McCabe–Thiele: Stepping Off Stages [Video]. (Feb 2, 2017) www.youtube.com/watch?v=rlg-ptQMAsg.



Feedback (field required)
Email (field required) Name
Occupation Organization
Note: Your message & contact information may be shared with the author of any specific Demonstration for which you give feedback.
Send