10176

# Ideal Nth-Band Discrete Filters

This Demonstration shows impulse and magnitude responses of ideal -band lowpass discrete filters for . While such filters are not realizable in practice, they serve as a desired template for passing certain frequencies while blocking others. The impulse response of an ideal lowpass filter is a sinc sequence (of unit norm in the figure), while its magnitude response is constant in the passband.

### DETAILS

An ideal -band discrete filter is a non-realizable filter whose magnitude response takes a single nonzero value in its passband. For example, an ideal lowpass filter passes frequencies below some cut-off frequency and blocks the others; its passband is thus the interval .
The impulse response of an ideal lowpass -band filter is a sinc sequence; its unit-norm version is
for .
The impulse response at is thus (see figure).
The magnitude response of a unit-norm is (see figure)
for , and 0 otherwise.
References
[1] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of Signal Processing, Cambridge: Cambridge University Press, 2014. www.fourierandwavelets.org.
[2] Wikipedia. "Sinc Filter." (Nov 10, 2014) en.wikipedia.org/wiki/Sinc_filter.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.