9887

Informal Power Assessment of the Normal Probability Plot

The normal probability plot or normal quantile plot for data from a variety of non-normal distributions is shown in panel A, while the other panels show the plot for normally distributed data. Since our interest is in how the data departs from the dotted straight line, the scales that would usually be shown have been suppressed to improve the visualization. By running the animation under "seed-normal", you can examine many cases in which the normal assumption holds; by comparing them with panel A, judge informally whether the features displayed in panel A are significantly non-normal. In the case of the -distribution, as the degrees of freedom increase it becomes difficult to distinguish non-normal from normal. Larger sample sizes provide more information and help, in some cases, to make the distinction. Some other common non-normal distributions are discussed in the details.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The data in all plots is standardized so the mean is zero and the variance is one.
Snapshot 1: This shows the generalized error distribution (GED) or exponential distribution with shape parameter . The Laplace and normal distributions correspond to respectively. When , the GED has lighter-than-normal tails, while corresponds to heavier tails. The GED was suggested for financial returns in [1].
Snapshot 2: This shows the contaminated normal distribution that is obtained as a mixture of two normal distributions both with mean zero; with probability 0.95 a data value is generated from the standard normal and with probability 0.05 from a normal distribution with standard deviation . The MixtureDistribution function is used for this. The contaminated normal distribution for outliers in industrial data was suggested in [2].
Snapshot 3: This shows the gamma distribution with shape parameter, . As increases, this distribution approximates a normal distribution.
References
[1] D. B. Nelson, "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, 59(2), 1991, pp. 347–370. www.jstor.org/stable/2938260.
[2] J. W. Tukey, "A Survey of Sampling from Contaminated Distributions," Contributions to Probability and Statistics, (I. Olkin, ed.), Stanford, CA: Stanford University Press, 1960.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+