Infrared and Raman Vibrational Spectra of Methane

This Demonstration shows how vibrational transitions in a methane molecule ) are associated with changes in its bond dipole moments. An IR-active vibrational transition occurs only when the vectorial sum of the individual C-H bond dipoles undergoes a change. If there is no such change in the dipole moment, the vibration is IR inactive, but still possibly active in the Raman spectrum. Each type of vibration is classified according to the symmetry group of the molecule [1].
The popup menu selects the type of vibration, and the trigger initiates the vibrational motion. The vibration of each bond is shown in the graphic. When the sum is different from zero, the change in molecular dipole moment is represented by a red arrow. The IR spectrum is listed as the last option; the vibrational peaks have been highlighted to distinguish them from rotational transitions at frequencies just slightly higher and lower than the vibrational peaks.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


A nonlinear molecule with atoms has vibrational degrees of freedom. For methane (), , and there are nine vibrational modes.
Taking account of degeneracy, just four types of vibrations can take place. Degeneracy occurs when different vibrations have the same frequency. The first type of vibration is nondegenerate, while the third type has a twofold degeneracy, and both the second and fourth types have threefold degeneracies [2].
Snapshot 1: symmetric stretching leading to an IR-inactive vibration
Snapshot 2: asymmetric stretching leading to an IR-active vibration
Snapshot 3: IR rotational-vibrational spectrum
[1] C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, 2nd ed., New York: Pearson/Prentice Hall, 2005.
[2] D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach, Sausalito, CA: University Science Books, 1997.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+