9711

Interpolating B-Spline Curves with Boundary Conditions

A B-spline curve is determined by interpolation points and the tangent vectors at both ends. There can be four to 12 locators; new ones are added at the end.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The control points of the nonuniform cubic B-spline curve are determined from the interpolation points and the boundary conditions. The first and last two control points are so-called phantom points, which are determined by the first-order boundary conditions. The computational method can be applied to three-dimensional curves, too.
B. K. Choi, W. S. Yoo, and C. S. Lee, "Matrix Representation for NURB Curves and Surfaces," Computer-Aided Design, 22(4), 1990 pp. 235–239.
G. E. Farin, Curves and Surfaces for Computer-Aided Geometric Design, San Diego, CA: Academic Press, 1988.

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+