Isothermal Plug Flow Reactor

In this Demonstration, the liquid-phase reaction A + 2B ⟶ C takes place in an isothermal plug flow reactor. Only A and B enter the reactor, and the user inputs the mole fraction of A in the feed. The reaction is first order in the concentration of A, but the user inputs the reaction order with respect to B and the value of the rate constant. When the reaction order is changed, the units of the rate constant changes but not is numerical value. The molar flow rates of A, B, and C (, , ) are plotted versus the cumulative reactor volume (the distance from the reactor inlet times the reactor cross-sectional area).

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The constant-density liquid-phase reaction takes place in an isothermal plug flow reactor:
, with reaction rate ,
where is the concentration of component , is rate of reaction, is the order of reaction with respect to component , and is the rate constant.
Mass balances on each component:
,
,
,
where is volumetric flow rate of the reactor and is the cumulative volume of the plug flow reactor (i.e., the distance from the inlet times the cross-sectional area). In order to solve the system of differential equations, initial conditions for must be specified:
The molar flow rates are calculated as where for component , is the molar flow rate and is the concentration.

PERMANENT CITATION

(University of Colorado Boulder, Department of Chemical and Biological Engineering)
"Isothermal Plug Flow Reactor"
 http://demonstrations.wolfram.com/IsothermalPlugFlowReactor/
 Wolfram Demonstrations Project
 Published: February 19, 2019
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.