Klein-Nishina Formula for Compton Effect

Low-energy (Thomson) scattering of a photon by an electron is approximated by the differential scattering cross section , where , the classical electron radius. The corresponding total scattering cross-section is given by . The Thomson formula is, however, inadequate to treat the higher-energy photoelectric and Compton effects. Klein and Nishina (1929) derived the scattering cross-section according to Dirac's relativistic theory of the electron: , where and , the incident photon energy in units of the electron rest energy (511 KeV/). The formulas pertain to the average of the two photon polarizations. A polar plot of the differential scattering cross section is shown in the graphic, with photon energy selectable in the range 0–10 MeV. The cross-section is expressed in units of , with a maximum value of , as shown by the light red circle. The directions of the scattered photons are shown by a dashed red arrow, while the scattered electron (initially at rest) follows the dashed blue arrow. Numerical values are given for the photon differential and total cross sections, the electron scattering angle and the electron kinetic energy .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: at low energies, the Klein–Nishina formula reduces to Thomson's formula, which is symmetrical for forward and backward scattering
Snapshot 2: as the energy increases, the differential cross section profile becomes less symmetrical
Snapshot 3: at higher energies, forward scattering predominates and the total cross section decreases with energy
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+