9711

Laminar Flow of a Power-Law Fluid in a Horizontal Pipe

The velocity profile versus radial position is obtained for the laminar flow of a pseudo-plastic or dilatant fluid (orange curve) and a Newtonian fluid (blue curve) in a pipe under the assumption of equal volumetric flow rate. The pipe radius is and the applied pressure gradient is . The power-law consistency index is chosen to be . If the power-law exponent is 1, then a Newtonian fluid is recovered. For the pseudo-plastic fluid, the velocity profile is flatter near the center, where it resembles plug flow, and is steeper near the wall, where it has a higher velocity than the Newtonian fluid or the dilatant fluid. Thus, convective energy transport is higher for shear-thinning fluids when compared to shear-thickening or Newtonian fluids.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

A non-Newtonian fluid has a viscosity that changes with the applied shear force. For a Newtonian fluid (such as water), the viscosity is independent of how fast it is stirred, but for a non-Newtonian fluid the viscosity is dependent. It gets easier or harder to stir faster for different types of non-Newtonian fluids. Different constitutive equations, giving rise to various models of non-Newtonian fluids, have been proposed in order to express the viscosity as a function of the strain rate. In power-law fluids, the following relation is satisfied: , where is the power-law exponent and is the power-law consistency index. Dilatant or shear-thickening fluids correspond to the case where the exponent in this equation is positive, while pseudo-plastic or shear-thinning fluids are obtained when . The viscosity decreases with strain rate for , which is the case for pseudo-plastic fluids (also called shear-thinning fluids). On the other hand, dilatant fluids are shear-thickening. If , the Newtonian fluid behavior can be recovered.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+