Level Surfaces and Quadratic Surfaces

For a function of three variables, , , and , the level surface of level is defined as the set of points in that are solutions of . A quadratic surface or quadric is a surface that is given by a second-order polynomial equation in the three variables , , and .
Let , , and be nonzero constants. We plot level surfaces for quadratic functions in three variables, which give some well-known quadratic surfaces:
gives ellipsoids; when , this is a sphere centered at the origin of radius .
or give elliptical cylinders with symmetry axes along the axis and axis, corresponding to and .
gives elliptic paraboloids, opening up or down as or .
and , with , give elliptic cones. For , the level surfaces are hyperboloids of one sheet.
() and () give hyperboloids of two sheets.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2016 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+