Lewis Carroll's Curve

This Demonstration shows a curve first defined by Lewis Carroll.


  • [Snapshot]
  • [Snapshot]


In [1, p. 16], Lewis Carroll posed the following problem:
"If a regular tetrahedron be placed, with one vertex downwards, in a socket which exactly fits it, and be turned round its vertical axis, through an angle of , raising it only so much as necessary, until it again fits the socket: find the locus of one of the revolting vertices."
The answer and solution are given [1, p. 26, p. 100]. The equations for the locus are ; , where the tetrahedron has edge length 1, altitude , and .
[1] L. Carroll, The Mathematical Recreations of Lewis Carroll: Pillow Problems and a Tangled Tale, 4th ed., New York: Dover, 1958.


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.