10182

# Liénard-Wiechert Potential for Spiraling Charge

The graphics show different views of the radiation patterns produced by a point charge moving in an inward spiral trajectory with angular velocity . Since a charge moving in a circular orbit is continually undergoing centripetal acceleration , it radiates away energy in accordance with Larmor's formula (in Gaussian units). As energy is lost, the radius decreases as the charge spirals inward toward the attracting center. Neglecting any contribution from the radiation field, the Liénard–Wiechert scalar potential produced by the moving charge is computed. This treatment is valid for , and thus excludes the ultrarelativistic domain.

### DETAILS

The Liénard–Wiechert scalar potential is given by where is the electron charge, is the velocity vector, and is the distance from the current position to the original position at the retarded time . The last equation is solved iteratively, updating the direction of the field from the charge's instantaneous position. As mentioned in the Caption, the computation is valid provided that .
References
[1] M. Trott, The Mathematica Guidebook for Graphics, New York: Springer-Verlag, 2004.
[2] K. Kokkotas. "Radiation by Moving Charges." (May 9, 2010) www.tat.physik.uni-tuebingen.de/~kokkotas/Teaching/Field_Theory_files/FT_course05.pdf.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.