Limits: A Graphical and Numerical Approach

Limits are used to describe the behavior of a function near but not necessarily at particular values of the function's argument or as the argument tends to plus or minus infinity. Limits arise in fundamental concepts of calculus and analysis. In particular, limits help define continuity, differentiability, integrability, sequences, series, and infinite sums and products. Limits can be explored graphically and numerically, but in practice these tools serve as approximations to the exact analytic limit. This Demonstration explores limits at a point, one-sided limits, and limits at plus or minus infinity. If decimals are used for a, the limit will be numerical which may or may not agree with the analytic solution. You can input the exact value of a (not in decimal form) into the controls directly by clicking on the plus sign next to the slider control for a. The result will be consistent with the analytic solution.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+