10217

Lines of Force for Two Point Charges

In an earlier Demonstration by Stephen Wolfram, two-dimensional equipotential contours , representing cross sections of equipotential surfaces, were plotted for two point charges of variable magnitude and location. It was also possible to make a vector plot of the corresponding electric field . It is much trickier to plot the lines of force emanating from a positive point charge and converging on a negative point charge. These are everywhere tangent to the electric field vectors and form a set of contours , shown as red curves, everywhere orthogonal to the equipotentials , shown in gray.
Derivation of is quite complicated in either Cartesian or spherical coordinates. It is, however, straightforward in prolate ellipsoidal coordinates defined by the variables and . Here and are the distances from the field point to charges and , respectively, and is the distance between the two charges. Expressed in the Cartesian coordinates of the graphic: , , . The equipotentials are given by . The function representing the orthogonal network of lines of force must then satisfy the equation . The solution , transformed back to Cartesian coordinates, is represented by the red contour plot shown in the graphic.

DETAILS

Snapshot 1: lines of force for two unequal charges of opposite sign
Snapshot 2: repulsion between like charges
Snapshot 3: lines of force for a point dipole, obtained for two infinitesimally separated opposite charges

PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.