Lorentz Transformation for a Rotating Square

This Demonstration shows the deformation of a rotating square according to the Lorentz transformation from the frame of reference of a rocket (RFR) moving with a velocity . Beta () is the ratio , where is the speed of light, so goes from 0 to 1.
The plot shows images of a rotating square as taken by a hypothetical camera placed on the RFR, which is located at . The camera takes the photo when on the axis. The coordinate refers to the position in the laboratory frame of reference (LFR).
The value of the angular speed of the rotating square must be chosen with care. Its value of 0.2—chosen for convenience, in order not to exceed the speed of light—is in the arguments of the Sin[] and Cos[] functions. A speed greater than can lead to more than one root in the solutions of the equations and it would be impossible to plot the rotating square. Play with the value of the angular speed to make the square rotate with different velocities.
The longitude makes the shape of the square change from a square to a cross.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: a rotating cross with the RFR at rest ()
Snapshot 2: by increasing , the square changes shape
Snapshot 3: in the limit as , the square becomes a vertical line, according to the Lorentz contraction
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+