10178

# Lyapunov Exponents for the Logistic Map

This Demonstration plots the orbit diagram of the logistic map and the corresponding Lyapunov exponents for different ranges of the parameter .
The Lyapunov exponent is a parameter characterizing the behavior of a dynamical system. It gives the average rate of exponential divergence from nearby initial conditions. The Lyapunov exponent of the logistic map is given by .
If the Lyapunov exponent is positive, then the system is chaotic; if it is negative, the system will converge to a periodic state; and if it is zero, there is a bifurcation.
By dragging the locator to the left or right or clicking the plot, you can scroll through the whole range of -values (0.70–1.0), generate the bifurcation diagram, and plot the Lyapunov exponent over that range.
You can zoom to the position of the locator by using the zoom sliders. To replot the graphs at higher zoom scales, use the "detail" button to increase the number of values and the number of iterations to 5000.

### DETAILS

Snapshot 1: period 4-8-16 bifurcations
Snapshot 2: period 3-6-12 bifurcations
Snapshot 3: period 5-10-20 bifurcations

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.