Material and Energy Balances in a Reactor with Heat Exchange

This Demonstration calculates material and energy balances for a reactor with heat transfer. The reaction is acetylene () hydrogenation to ethylene (), where is hydrogen. The feed rate of is fixed at 100 mol/h; use sliders to change the feed rates of and an inert (). Use either the extent of reaction or the outlet temperature to change the conversion of . Select "extent of reaction" to set the extent of reaction and heat removal rate with sliders to change the outlet temperature. Select "outlet temperature" to change the outlet temperature and heat removal rate to determine the conversion, and the heat removed is fixed to the value that results in the selected outlet temperature. If the extent of reaction is restricted by the limiting reactant , the process indicates that the limiting conversion is reached by displaying the message "limiting reactant depleted". If the outlet temperature is below 0 °C or above 1,000 °C, the message "operating conditions unrealistic" appears.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The reaction takes place in a reactor with heat exchange. Reactants and and inert enter the reactor. The molar flow rates of each component exiting the reactor are calculated using the extent of reaction:
where and are the molar flow rates of component exiting and entering the reactor (mol/h), is the stoichiometric coefficient, and is the extent of reaction (mol/h).
The extent of reaction is:
where and are the enthalpies of the entering and exiting components (kJ/mol), is the heat of formation with a reference state at (kJ/mol), is heat capacity (kJ/[mol °C]), is temperature (°C), and is the heat removed (kJ/h).
The outlet temperature is:
This screencast video [1] show calculations for an energy balance on a reactor with heat transfer. This screencast [2] explores limiting reagents.
[1] Energy Balances with Unknown Outlet Conditions [Video]. (Dec 6, 2012) www.youtube.com/watch?v=FPDPxAp-Ms0.
[2] Limiting Reagent (Interactive) [Video]. (Nov 12, 2014) www.youtube.com/watch?v=7H2EnOzGxD0&feature=youtu.be&list=PLD4476BAFA5A65111.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+