10182

# Matrix Solutions to Airy's Eigenvalue Problem

This Demonstration treats the homogeneous boundary case of the Sturm–Liouville eigenvalue problem by solving Airy's differential equation expanded around an ordinary point. The roots of this differential equation are called eigenvalues, and the corresponding functional solutions are known as eigenfunctions. Since solving for these eigenfunctions involves finding an infinite-dimensional matrix, algebra can be used to express solutions of the differential equation. After the eigenfunctions are generated, they are then plotted over a specified interval. The periodicity of these eigenfunctions stems from the fact that the boundary conditions used in this Demonstration were homogeneous.
The differential equation can also be solved analytically, making use of the Airy functions and . The eigenvalues are then determined from the zeros of these functions.

### DETAILS

The general form of Airy's set of differential equations used here is .
This can be expressed using infinite matrices in order to solve for the eigenfunctions. To do this, we treat the equation in terms of the derivative operator , the vector operator , and the identity operator . Set
,
,
,
so that
.
Reference
[1] U. Siedlecka, "Sturm–Liouville Eigenvalue Problems with Mathematica," Journal of Applied Mathematics and Computational Mechanics, 10(2), 2011 pp. 217–223. www.srimcs.im.pcz.pl/get.php?article=2011_ 2/art_23.pdf.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.