11251

Method of Support Vector Regression

This Demonstration uses the method of support vector regression to calculate curves representing chemical data. The regression curve is shown in magenta. The margins (dashed green curves) are at distance from the regression curve. The circled black points outside of the margins are the support vectors; the points inside the margins could be deleted and the regression curve would not change. The method of support vector regression uses kernels: here either a polynomial kernel (of degree 1, 2 or 3) or a Gaussian kernel (with parameter ). You can vary the parameter to adjust the weights given to the fitting errors from the curve to the support vectors.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Snapshot 1: for small , most points are support vectors
Snapshot 2: for small , very little weight is given to discrepancies between the fit and the support vectors, so that the fit follows the data only approximately
Snapshot 3: with a Gaussian kernel, a small causes the fit to follow the data very closely
Snapshot 4: with a larger , the fit follows the data less accurately
The data used in this Demonstration is from [1].
For a detailed derivation and explanation of the method of support vector regression, see the document cited in Related Links. In that document, we arranged a small competition in which we studied the performance of support vector regression and seven other prediction methods when applied to 11 datasets. Support vector regression was the winner of that competition.
Reference
[1] O. Ivanciuc, "Applications of Support Vector Machines in Chemistry," in Reviews in Computational Chemistry, Vol. 23 (K. B. Lipkowitz and T. R. Cundari, eds.), Weinheim: Wiley-VCH, 2007 pp. 291–400.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2017 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+