9722

Methods of Social Choice

This Demonstration illustrates the outcomes of various social choice procedures. These procedures are used to reach a decision when there are more than two alternatives and none of those alternatives is the first choice of a majority of the voters. Quite often, for the given preference lists of the voters, the different procedures choose different winners. In addition to plurality, the standard methods of the Borda count, sequential pairwise voting with a fixed agenda (abbreviated SPFVA in the Demonstration), and the Hare method are illustrated. The option to have a dictator is included, as is information on whether a given set of voter preferences has a Condorcet winner.
  • Contributed by: Marc Brodie (Wheeling Jesuit University)

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Given alternatives, each voter ranks those alternatives into a strict "preference list".
Some brief definitions:
The Borda count assigns points to each alternative, giving that alternative points each time it is the first choice of a voter, points each time it is the second choice, etc. The alternative(s) with the most points is (are) declared the social choice.
Sequential pairwise voting with a fixed agenda starts with a particular ordering of the alternatives (the fixed agenda). The first two alternatives on that list are compared in a "head-to-head" competition, and the alternative preferred by the majority of the voters survives to be compared with the third alternative. This procedure iterates until only one alternative remains and is declared the social choice. For given preference lists, different fixed agendas can result in different winners (see snapshots 2 and 3).
The Hare method iteratively deletes those alternatives that occur at the top of the fewest preference lists until one alternative is at the top of a majority of lists and is declared the winner.
A Condorcet winner is an alternative that would defeat each of the other alternatives in a head-to-head competition.
See A. D. Taylor, Mathematics and Politics: Strategy, Voting, Power and Proof, New York: Springer 1995, for further details.

RELATED LINKS

    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+