Mimicking the Kuramoto-Sivashinsky Equation Using Cellular Automaton

The Kuramoto–Sivashinsky system arises in the description of the stability of flame fronts, reaction-diffusion systems, and many other physical settings. It is a simple nonlinear PDE that exhibits chaotic behavior in time and space. The equation was introduced as a model of instabilities on interfaces and flame fronts by Sivashinsky and as a model of phase turbulence in chemical oscillations by Kuramoto. The equation in 2D is given as
where the diffusion term is , the dissipation term is , and the advection term is ; can represent any physical characteristic like velocity or a mixture fraction.
The initial setup assumes that there is a highly flammable center (the red area). An square lattice is used with discretization in both and directions as . A von Neumann neighborhood is used. Energy contained in a lattice of size is denoted by . At each time step, a unit amount of energy is added to a random lattice size as . If , then ; that is, if the energy at a lattice point is greater than some threshold energy, the energy from that lattice point gets dissipated. The threshold energy is the same for all sites and is time independent. The dissipation process is called burning.
Define the propagation energy threshold as . Neighbors of the burning site burn if their energy is greater than that of ; that is, if , then .
Reflecting boundary conditions are used.
Energy diffusion takes place at every time step as , where is calculated as

, for all ,
where is the energy content of the site at time and the sum is over all the neighbors of . is the diffusion constant.
The advection term was not implemented as the authors are more interested in using the Kuramoto–Sivashinsky equation in studying forest fires and simple combustions.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The code was part of a project for the NKS Summer School 2011.
[1] T. C. Chan, H. F. Chau, and K.S. Cheng, "A Cellular Automaton for Diffusive and Dissipative System," http://www.ncbi.nlm.nih.gov/pubmed/9962983.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+