Motion Parallax versus Depth, 3D (Visual Depth Perception 13)

This Demonstration lets you move the relative distance between 0 and 1 and uses the formulas below to find the fixate distance and pursuit rate , keeping the motion .



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The retinal motion of a distractor viewed by a translating observer is not sufficient by itself to determine the relative depth of an object. This is similar to the static situation where binocular disparity does not determine depth by itself, but together with convergence does determine it.
The Demonstration "Motion Parallax versus Depth, 2D (Visual Depth Perception 12)" (see Related Links) shows both fixate distance and pursuit on separate graphs. There are additional details in that Demonstration. This Demonstration shows both the fixate distance and associated pursuit rate on a single 3D curve where retinal motion is constant.
The Demonstration "The Motion/Pursuit Law in 1D" (see Related Links) shows how the ratio of motion to pursuit does determine relative depth in this basic case.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+