Multiple Tubular Reactors with Interstage Cooling

Low conversion is sometimes overcome using several adiabatic reactors with interstage cooling. Several reactors, with heat exchangers for cooling between them, are run up to near the maximum reaction rate until satisfactory conversion is attained. Methanol synthesis from syngas is a typical example where this technique is used: . This reaction is reversible at 250°C (the temperature where commercial reactors are operated). It is common to use interstage cooling to achieve high conversion and to extract reaction heat.
Consider a reversible exothermic reaction, , such that the reaction rate, , and the equilibrium constant, , are given by the following expressions:
where is the conversion (unitless), is the inlet concentration (in moles/liter), is the universal gas constant (1.987 cal/mol K), and is the temperature (in Kelvin).
It is assumed that the product is independent of temperature and equal to 1000 cal/liter.
This Demonstration displays the loci of the maximum reaction rate (magenta curve), the equilibrium conversion, (the green curve), and the possible trajectories for a number of adiabatic reactors with interstage cooling. You can vary the number of reactors. The cooling step is represented by the horizontal blue segment. The conversion versus temperature in the PFR (plug-flow reactor) is given by the red line. In addition, the final conversion is displayed. Usually, up to three adiabatic reactors with interstage cooling are sufficient to achieve good conversion. Indeed, this Demonstration shows that when the number of reactors becomes greater than seven, the additional gain in the final conversion is not too large and does not justify using additional reactors and heat exchangers.


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


L. D. Schmidt, The Engineering of Chemical Reactions, Oxford: Oxford University Press, 1998.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+