Multiplication Tables for the Group of Integers Modulo n

Given a positive integer , the set of positive integers coprime to satisfies the axioms for an Abelian group under the operation of multiplication modulo . For instance, and because . This Demonstration shows the array plot of the multiplication table modulo corresponding to .


  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


The order of is given by Euler's totient function , implemented in Mathematica as EulerPhi[n], which for has values . is cyclic only if is , or , where is an odd prime and . The first few values for which is not cyclic are . Any generator in the cyclic case is called a primitive root modulo .
[1] Wikipedia. "Multiplicative Group of Integers Modulo n." (Jul 31, 2012) en.wikipedia.org/wiki/Multiplicative_group_of _integers _modulo _n.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+