9846

n-Sectors of the Angles of a Triangle

The -sectors of an angle are the lines that divide the angle into equal parts. In a triangle, the bisectors are collinear, the trisectors lead to Morley's theorem, …. More modestly, this Demonstration provides a way to count the intersection points of the -sectors of the angles of a triangle as a function of , which is for a scalene triangle.

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

Let , , and be the sets of -sectors of the angles , , and , respectively. The number of points of intersection between any two of the sets is , hence, the number of points is at most . For example, the maximum number of points for is 3: one is the intersection of the bisectors of and , one is the intersection of the bisectors of and , and one is the intersection of the bisectors of and , but we know these three points coincide. The principle of inclusion-exclusion gives the number of distinct points:
.
When , this gives 1=1+1+1-(1+1+1)+1.
Now we want to count the distinct points for any value of . Some experimentation with this Demonstration shows that the result depends on the triangle's shape, especially its central or lateral symmetry. For example, for , the number of lines is nine, which is odd, so that the bisectors of each angle are in each of , , and . The number |(A⋂B) ⋂ (B⋂C) ⋂ (C⋂A)| is 37 for an equilateral triangle with central symmetry, one for a scalene triangle with no symmetry, and nine for a isosceles with lateral symmetry; for , both are zero, and so on.
By tabulating the numbers for each set and applying Mathematica's built-in function FindSequenceFunction on the results, it appears (this is not a proof) that for a scalene triangle . For an isosceles triangle without a right angle the formula appears to be ; for an equilateral or right isosceles triangle the formulas are complicated.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+