Napoleon's and van Aubel's Theorems

Starting with any triangle ABC, construct an equilateral triangle on each side, and then connect the centers of the triangles. The points form another equilateral triangle. This result is known as Napoleon's theorem.
For a quadrilateral ABCD, the similar process of constructing a square on each side and then joining the centers does not result in a square. However, the line segments joining the centers of opposite squares are always the same length and at right angles to each other. This is known as van Aubel's theorem.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Snapshot 1: the triangle relationship holds even if the three points are collinear
Snapshot 3: the quadrilateral relationship holds even when the line segments do not intersect
M. Gardner, Chapters 5 and 14, Mathematical Circus, New York: Alfred A. Knopf, 1979.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+