9807

Newton's Polynomial Solver

This Demonstration shows Newton's method of finding approximate roots of an equation by using three slide rules, called primary, secondary, and tertiary. We can read directly with an auxiliary primary rule. We calculate the value of polynomial for , , and . If its value for is near , is approximately a root of the equation.
The essence of the original construction was to use slide rules to perform multiplication, while addition was left to a person. We automated addition as well by recording values of polynomial terms and the value of the polynomial in a grid.
The current construction works for coefficients and arguments with absolute value at least 1. Suppose we want to solve the equation . We enter and move sliders to get polynomial value 6 for different positions of . On the auxiliary rule we read , , .

THINGS TO TRY

SNAPSHOTS

  • [Snapshot]
  • [Snapshot]
  • [Snapshot]

DETAILS

The slide rules are called primary, secondary, and tertiary. On the primary rule we read according identity . On the secondary rule we read according . The tertiary rule gives us , . The actual value of the polynomial at is , the signs being determined appropriately.
Reference
[1] C. J. Sangwin, "Newton's Polynomial Solver," Journal of the Oughtred Society, 11(1), 2002. pp. 3–7. web.mat.bham.ac.uk/C.J.Sangwin/Sliderules/newtonpoly.pdf.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.









 
RELATED RESOURCES
Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2014 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+