10176

# Noncircular Roller Drive

In this Demonstration, a roller drive is simulated by two curves rolling along each other without slipping. The curve on the left is the driving roller and turns at a constant angular speed. The curve on the right is the driven roller and turns at an angular speed proportional to the ratio between the radii of both rollers at their contact point.
Controlling the parameters to , you can vary the cumulative angular displacement curve of the driven roller. These parameters can also be used to compute the equivalent polar curves of both rollers.

### DETAILS

For a good article about curves rolling along other curves, see [1].
Take the cumulative angular displacement of the driving roller to be and that of the driven roller to be .
The radius at the mutual contact point of the driving roller is , and that of the driven roller is . These are effectively the polar equations of both curves.
Reference
[1] J. Bloom and L. Whitt, "The Geometry of Rolling Curves," The American Mathematical Monthly, 88(6), 1981 pp. 420–426. http://www.jstor.org/discover/10.2307/2321826.

### PERMANENT CITATION

 Share: Embed Interactive Demonstration New! Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details » Download Demonstration as CDF » Download Author Code »(preview ») Files require Wolfram CDF Player or Mathematica.

#### Related Topics

 RELATED RESOURCES
 The #1 tool for creating Demonstrations and anything technical. Explore anything with the first computational knowledge engine. The web's most extensive mathematics resource. An app for every course—right in the palm of your hand. Read our views on math,science, and technology. The format that makes Demonstrations (and any information) easy to share and interact with. Programs & resources for educators, schools & students. Join the initiative for modernizing math education. Walk through homework problems one step at a time, with hints to help along the way. Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet. Knowledge-based programming for everyone.