Nonlinear Wave Resonances

Clustering of three-wave resonances among spherical planetary waves. Top: topological view in the form of a 2D (directed) or 3D graph; bottom: geometrical shape of a cluster in the spectral -space. Red arrows show the possible directions of the energy flux in a given cluster. Labels designate the coordinates of vertices in the -space.



  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]
  • [Snapshot]


Nonlinear wave resonances play an important role in wave turbulent systems; they are a major mechanism that allows the explanation of many results of laboratory experiments and some real physical phenomena. For instance, three-wave resonances among spherical planetary waves describe so-called intra-seasonal oscillations in the Earth's atmosphere [1]. A very important characteristic of wave systems possessing nonlinear resonances is their ability to form small clusters of waves interacting only among each other.
Knowing the geometrical shape of a cluster in the spectral space (that is, in terms of the coordinates of wavevectors) gives explicit information [2] about the form of dynamical systems corresponding to a given cluster. Notice that for illustrative purposes it is more suitable to use the topological structure of the resonances instead of their geometrical structure. To clarify the point, both presentations—geometrical and topological—are shown for the clusters appearing in the three-wave resonance system of atmospheric planetary waves [1]. The simplest clusters consisting of only three waves (triads) were cut out.
[1] E. Kartashova and V. S. L'vov, "Model of Intraseasonal Oscillations in Earth's Atmosphere," Phys. Rev. Lett., 98(19): 198501, 2007.
[2] E. Kartashova and G. Mayrhofer, "Cluster Formation in Mesoscopic Systems," Physica A: Stat. Mech. Appl., 385(2), 2007 pp. 527-542.
[3] E. Kartashova and V. S. L'vov, "Triad Dynamics of Planetary Waves," Europhys. Lett. (submitted), e-print: arXiv:0801.3374v1 [nlin.CD], 2008.
    • Share:

Embed Interactive Demonstration New!

Just copy and paste this snippet of JavaScript code into your website or blog to put the live Demonstration on your site. More details »

Files require Wolfram CDF Player or Mathematica.

Mathematica »
The #1 tool for creating Demonstrations
and anything technical.
Wolfram|Alpha »
Explore anything with the first
computational knowledge engine.
MathWorld »
The web's most extensive
mathematics resource.
Course Assistant Apps »
An app for every course—
right in the palm of your hand.
Wolfram Blog »
Read our views on math,
science, and technology.
Computable Document Format »
The format that makes Demonstrations
(and any information) easy to share and
interact with.
STEM Initiative »
Programs & resources for
educators, schools & students.
Computerbasedmath.org »
Join the initiative for modernizing
math education.
Step-by-Step Solutions »
Walk through homework problems one step at a time, with hints to help along the way.
Wolfram Problem Generator »
Unlimited random practice problems and answers with built-in step-by-step solutions. Practice online or make a printable study sheet.
Wolfram Language »
Knowledge-based programming for everyone.
Powered by Wolfram Mathematica © 2018 Wolfram Demonstrations Project & Contributors  |  Terms of Use  |  Privacy Policy  |  RSS Give us your feedback
Note: To run this Demonstration you need Mathematica 7+ or the free Mathematica Player 7EX
Download or upgrade to Mathematica Player 7EX
I already have Mathematica Player or Mathematica 7+